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Tetanus Toxin - Significance

Tetanus Infections are no longer a serious health problem In developed countries because

of effective immunization procedures. Therefore it is appropriate to ask why effort should be

devoted to studying the mechanism of action of tetanus toxin. In the first place it is important to

recognize that potent toxins produced by a variety of organisms have been valuable tools that

have been used to probe the molecular features of the complex nervous system (Ceccarelli and

Clementi, 1979). For example, the sodium channel and the nicotinic acetylcholine receptor have

been well characterized as a result of the use of tetrodotoxin and a-bunge.rotoxin, respectively.

Therefore one important reason to study tetanus action is that It may shed light on unknown

molecular processes that occur in the brain.

The chemical communication of signals between neurons across the synaptic cleft

referred to as synaptic transmission, is mediated by neurotransmitter substances and is a crucial

process in the nervous system. Yet, the molecular processes that underlie the neurotransmitter

release mechanism in the presynaptic cell are not understood. Accordingly, It would be extremely

valuable to have toxins that could be used as tools to probe this specific process.

Tetanus toxin, a protein produced by the bacterium Clostridium tetan4 is an extremely

potent neurotoxin (Simpson, 1986; Habermann and Dreyer, 1986). It is now well known that

tetanus toxin inhibits neurotransmitter release from presynaptic terminals from a variety of neural

preparations Including neuromuscular junctions, primary cultured neurons, brain slices and

synRptosomes (Schmitt et aLL981; Bergey et a11983; Osborne and Bradford, 1973). Many

laboratories have been active in trying to identty the mechanism by which tetanus brings about

this inhibition. From such studies It Is now clear that tetanus toxin does not (1) cause cell death



or disrupt the ultrastructure of the presynaptic terminal (Mellanby and Green, 1981; Schwab and

Thoenen, 1976); (2) alter the synthesis, storage or uptake of neurotransmitter (Collingridge et

aL1980); (3) modify presynaptic action potentials or inward calcium currents (Dreyor et aL 1983).

Thus the current hypothesis for tetanus toxin action is that this toxin acts by perturbing the

coupling of excitation to neurotransmitter secretion at a step that occurs downstream from Ca2*

entry into the neuron. Tetanus toxin is one member of a small class of unique neurotoxins that

act at the presynaotic terminal on processes directly involved with neurotransmitter release. All

of the evidence gathered to date strongly supports the idea that tetanus toxin is indeed a very

valuable tool to study excitation-secretion coupling in the central nervous system.

A second Important reason to study the action of tetanus toxin is that its mechanism of

action is strikingly similar to that of another potent toxin, botulinum toxin, which is produced by

another ciosely related gram positive bacterium, Clostridium botulinum (Simpson, 1986). In

contrast to tetanus infections, immunization and protection against botulinum Infections is very

limited. Thus, an understanding of the action of tetanus should yield information which will lead

to a therapeutic strategy for the treatment of the toxic sequelae of the very serious botulinum

infections.
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Results from the Principal Investigator's Labo, atory

Durinq the Past Year

During the initial phase of this research program, considerable effort was devoted to

developing cultured cells systems that could be used as appropriate models in which to

investigate the mechanism of action of tetanus toxin on neurotransmitter release (Staub et al 1986;

Walton etaLl988; Sandberg etaLlS•9). We have established that pheochromocytoma cell line,

PC1-, when cultured with nerve growth factor (NGF) has a large concentration of high affinity

tetanus toxin receptors (Walton et a11988), and is a valid model system in which to study the

mechanism of action of the Clostridial neurotoxins. Further, using ttis cell system in the second

phase of the project, we have established that cGMP plays a role in the mechanism of toxic action

in these cells (Sandberg et all 989). During the past year we have continued to exploit this cell

system and have extended these previous studies to a detailed examination of the role of cGMP

in neurosecretion in NGF-treated PC1 2 cells. The rationale for this study was that by more clearly

defining the role of cGMP a better understanding of the actio' of tetanus toxin will be derived.

It is well recognized that cGMP levels rise in nervous tis3ue in response to depolarizing

stimuli (Nathanson, 1977; Goldberg and Haddox, 1977). In the previous annual report we

described procedures that we have developed methods to permeabilize PC12 cells with a pore-

forming exotoxin, a-toxin, obtained from Staph. aureus. This toxin has been utilized effectively

to examine neurosecretion in several neural preparations (Ahnert-Hiiger etaL1985; Thelestam and

Blomqvist, 1988). The advantage of this approach Is that in permeabilized cells one has direct

access to the intracellular space to which one can appl, probes in a controlWed manner. Initial

experiments with these cells demonstrated that both dopamine (DA) and acetyicholine (ACJh) were

secreted from such cells in a Ca 2*-dependert manner (Figure 1). The response was biphasic,
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with haltf maximal effects observed at 0.6 pM and 20 pM free Ca*.
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Experiments were performed to deiermine whether 1[H]DA release in both Ca-dependent
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phases was derived from transmitter stored in vesicles. Release of ATP, a nucleotide which has

been shown to be co-localized with neurotransmitters In vesicles (Green and Rein, 1977), was

used as an independent index of vesicular release. As shown in F~gure 1 B, the rolease of ATP

from permeabilized cells showed a biphasic response to Ca 2
+ nearly identicai to that for [3H]DA.

There is accumulating evidence from this laboratory that tetanus toxin exhibits its effects

by altering a step involved in cGMP metabolism. Such data suggests that cGMP may be an

important signalling molecule in regulating neurosecretion in general. As an initial approach to

examine this hypothesis, experiments were performed to examine the effects of cGMP on [3H]DA

release in permeabilized PC12 cells. As shown in Figure 2, cGMP did evoke the release of DA

from such cells in a dose- and Ca 2
+-dependent manner.
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Figure 2. Dose-4ssponse curves for CGMP-me diated robins of [=I-'OA and ATP from permealbized PC12 cola. Cola were
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subtracted from experimontnj valuos to shlow tio specific increase duo to cGM4P.

The time course for the cGMP-evoked release of [3H]DA is shown in Figure 3. After' the cells were

exposed to 1amM cGMP, there was a lag period ofl mmai, after which, [3H]DA release occurred,

reachhng maximal values by 3 rain.
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Figure I1 Tnmecourse of cGMP-rnediated ruiessedo ("HDk Calls, incubated kInth presance of M~DA were perrneabilzedwfth a-toxin in KG buffer (10mM EGTA). Parmeablization medium was removed and replaced with fresh buffer Ini thepresence or absence of 1mM cOMP. At the times indicated tMi me~dium was remroved and specific re~ease due tonuciecade was daterrrned at each time point values shown are fromn a single experimnent (+/- SEM; n-3). Release Intfoe absence of CGMP represented Z3% of total Label at 3 mi~n.

The nucleotide specificity for evoked release of transmitter in the absence of Ca2* was

examined. Only analogues of cGMP were effective in evoking rH]DA release under the condftk~ns

used. In contrast, GMP and 'Aher cyclic nucfeotides were not active in this system (data not
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shown). Thus, taken together, these data suggest that cGMP can play a role in regulating

neurosecretlon from PC12 cells.

Putative sites of action of cGMP. A possible explanation for the action cf CGMP on secretion is

that It may release Ca 2* from intraceilular stores. However, since 10 mM EGTA was used in the

release buffer, it seemed unlikely that any released Ca 2÷ would not be buffered and could result

in a Ca2* transient sufficient to stimulate secretion. Experiments were performed to confirm this

hypothesis. PC12 cells, permeabilized in the absence of Ca 2
*, were treatad with A23187 in order

to release Ca2 from intracellular stores. In the absence of EGTA this treatment resulted in

increased release of transmitter (Figure 4). However, release observed in the presence 0

ioncphore was reduced to control levels if the concentration of ECTA was greater than 1ram

(Figure 4). Thase results argue against the possibility that cGMP-evo.ed [3H-1A release,

measured In the presence of 10rmM EGTA, results from release of a cGMP-sensitive intracellular

poot of Ca2*.
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The action of cGMP may involve a cGMP-dependent kinase. While the effects of cGMP did

not require the presence of exogenous ATP (data not shown), there may be sufficient ATP still

presemyt in permeabllzed PC12 cs0- to malntain phosphory!ation-mediated events, This

hypothesis was supported by ;9sufts from experiments In which ATP levels were measured in

permeabiied and Intacl cells and found to be 44 and 97 nmol.'mg of protoin respectvely. Thus

In order to further explore this hypothesis, the effects of a non-hydrolyzable analogue of ATP on

cGMP-evoked [NH]DA aelease was examined. Addition of AMPPNP (Yount etuofL1971) completely

inhItbfed any increase In secretion due to cGMP (Figure 5).
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Those results suggest that hydrotysis of ATP is important In mediatitig tne effects of CGMP. Thus,

these data suggest the importance of phosphoryistion-mediated events, through the acttvation

of a cGPAP-actlvated kiiase for ex~ample, in the stlmutatknr of secretion by cGMP.
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CONCLUSIONS

During the early phase of this project we were successful in establishing a cultured cell

model system, the PC12 pheochromocytoma cell line, to study the mechanism of action of

tetanus toxin. Further we have studied the characteristics of the intoxication pathway (Sandberg

ot ao1989) and have found that it Is analogous to that which has been characterized, to some

extent, ki vivo (Simpson, 1986; Habermann and Dreyer, 1986). The major thrust during the past

year was to exploit this well characterized model system to gsin insight into the molecular

mechanism of action of tetanus tjxin.

In the present study, we have utilized a preparation of permeabilized, NGF-differentiated,

PC12 cells to examine the role of cGMP in n,)urotransmitter release. An important finding is that

cGMP can stimulate neurotransm:tter release from such cels in a Ca2'-independent manner.

Further, NGF-dlfferentlated PC12 cells show two phases of vesicular neurotransmitter rolease that

can be distinguished not only by their differential sensitivity to Ca,', but also In their sens"ttviy to

cGMP.

Permeabilized NGF-treated PC12 cells retain their ability to release catecholamines in

response to Ca'". The Ca2* dose-response curve for release of catecholamines revealed two

phases of neurotransmitter release which is similar to that reported for non-differentiatod PC12

cabs (Ahnert-Hilger ef a 1985). Two serie3 of experiments indicated that both the high and low

affinity Ca? -dependent release originated from a vesicular pool(s); firstty, preincubatlon with the

plant alka.oid reserpine, which signfvantty reduces the level of transmitter within vesicles (Kttner

ef aL1997), inhibited Ca-dependent secretion from both phases. Second, the release of ATP,

which is stored in sero'tory vesicies with transmltter ard co-reteased upon stimulation (Green and

Rein, 1977), exhibits a simbir biphasic response to CO' (Figute 13). Thus, anthough the
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biological significance of these two phases of transmitter release remain to be defined, they arise

from pools of secretory vesicles.

An important goal of the present study was to verity the hypothesis, presented elsewhere

(Sandberg eo aL1989), that cGMP may play a role as a signalling molecule in secretion. Several

results presented here support the conclusion that cGMP is Involved In this process; under

nominally Cae"-free conditions (pCa> 9), cGMP stimulates transmitter release in a time-dependent

manner; the co-release of ATP indicates that cGMP-evoked release of DA was derived from

vesicular pools; the magnitude of cGMP-evoked release in Ca 2*-free medium Is similar to that

evoked by excitatory concentrations of free Ca2l (1 -1 01 M). However, while the effects of cGMP

were dose-dependent and highly specific (i.e. DA release was seen only for cyclic analogues of

guanine nucleotides), It Is not clear whether the nucleotide stimulates secretion from the same

population of vesicles as Ca 2".

Dose-response studies revealed that, under the conditions used, half maximal doses of

cGMP were in the range of 5001,M. These levels may be higher than expected in a physiological

context. However, several resufts indicate that the apparent potency of cGMP is reduced due to

two factors; a lack of complete permeability of tr' plasma membrane to cGMP and degradation

of the nucleotlde.

Permeabilization of cells with saponin (which produces larger pores than a-toxin (Ahnert-Hilger

and Grat•l, 1968), Increased the potency of cGMP by 40%. Furthermore, when coos were

incubated with [3H]cGMP, 60% of the ceil-associated nucleotide was degraded within 3 min.

Inciusion of phosphodlesterase inhibitcrs partially reversed 1:s degradation and increased the

apparent potency of cGMP. Thus, while it is difficut to accuratily estimate the effect"v

concentiation of intracellular cGMP in these experiments, It is clear that cGMP Is ,l."cant'r more

potent than estimated by the half-maximal concentratior of the dose-response relaton.
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While many of the experiments were performed In the iRbsence of Ca ÷, under

physiological conditions Ca2 would be present Therefore It was Imoortant to determine if there

were interactions between Ca 2* and cGMP cn secretion. Transmiter release induced by cGMP

was observed only in Ca 2*-free buffers. While a small Increpse In release was observed if cGMP

was present during incubations with low C032 concentrations (<I PI" data not shown), cGMP

effects were not additive with release induced by 10pIM free Ca 2 . Afthoughý this effect could be

explained by a cGMP-medlated release of Ca 2
4 from intracellular stores this is unlikely, since, in

the presence of 10mM EGTA, Intracellular Ca 2* levels are effectively buffered (Figure 4).

Furthermore, in contrast to its stimulatory action under conditions of low free Ca 2
*, cGMP was

actually inhibitory to release induced by 100pM free Ca 2
*. It was also clear that AMPPNP

inhibited the action of cGMP suggesting that hydrolyzable ATP is required for the action of the

nucleotide. These results suggest that a cGMP-dependent kinase may be an important mediator

of the response. Further experiments are needed to clarift this Issue.

Thus, in summary, cGMP was found to stimulate the rapid release of neurotransmitter

from permeabilized PC0 2 cells under essentially Ca'-free conditions. Further, in the presence of

Ca2, cGMP regulated one phase or mode of Ca 2"-dependent release. These observations

provide new Insight on the importance of cGMP in regulating the molecular events that are

triggered by depolarization and that lead to neurotransmitter release. It will be important in future

studies to examine the effects of tetanus and botullnum toxins on the process.
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